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INTRODUCTION

'It

qlJ

Many different types of ima_ng sensors exist, each sensitive to, a different

region of the electromagnetic spectrum. P_sive _ensors, which collect energy
emitted or reflected fi'om a source, include television (visible light), night vision

devices (intensified visible light), and infrared (heat) sensors. Active sensors, in

which objects are irra¢_iated _d the _flected energy from those o0jects collected,
include sonar and ulna.sound (acoustic waves) and radar (radio waves)

These set,.ors were developed because of their ability to increase the

probat_ility of identification or detection of objects under difficult envixonmenta_

conditions. Each sensor is sensitive to different portions of the spectrum; therefore

resultant images contain different information even when used under the same

conditions. Because of this variety., in_ge processing algorithms that will "fuse" the

information from more than one sensor into a single coherent display image are

being developed. These displays are termed multisensor or sensorfusion displays.

The work described in this paper was conducted to guide the development of

such multisensor displays. An engineer developing such a system constantly

reviews the resuiP, ng display on a subjective basis. More formal testing is also

necessary. Suppose, for example, that two sensor sources are available to operators

and that each of these sensors alone leads to 0 70 probability of target recognition

andcr some particular environmental conditions. What is the expected probability of

target recognition when the two sensors are combined according to some image

processing technique? If observed target recognition improves to 0.80 with a sensor

fusion system, is that a large improvement, or should one actually expect much

more? The ability to answer these types of questions can lead to a better human-

machine system that can be evaluated both relatively and absolutely: re!auvely, by

determining which systems are better than others, and absolutely, by comparing

operator performance to theoretical expectations.

INFORMATION IWI'EGRATION MODELS

Previous _,ork has been conducted on the topic of how operators inte_a:e the

information from multicomponent auditory signals (Reference 1), from the visuai

and auditory senses (Reference 2), and _om mukiple observations over time

(Reference 3). These models all predict operator integration performance as a



function of ,,he operators performance ,. ,h "d_e indi_daal smTuLi corr,pnsing me

integ_araen task. Two classes of models have ,:_en develor_xt: de:ision combinano_

models amd obsereation integration models (for a review, see Refere, nce a). "[t_e

decision cornbinanon models assun_ that in the inlegra_ion task :he ol:w:rator makes

an individual decision atx_at each aspect of the combin_'xt di_lay ard _en combines

d_ose decisions to yield one final decision. At the time of the fina: decision, only the

previous decisions are available and not the information that le:t m the individuN

decisions. The observation imegration models, on the other hand, assume that the

operator does have access to thai information. The internal re_'esentations ot :he

individual observations (e.g., likeLihood ratios) are then combh_ed, yielding only
one decision.

The simplest version of a decision combination model i_s the probability

summation, or statistical summation, model. As Reference 4 notes, it is derived

_om the independence theorem of pmbabili_" theory and was fu'st proposed by

lh.renne as a perceptual model (Reference 5). It states that l:_onnance with a

complex stimulus is predictable from the pe_otmance with the individual stimuli

according to the following equation:

P_._= P_ + P2 - P:P2

where Pt and Pz represent detecnon probabilities for the two s_nuli presented in

isolation, and P12 is the _tec_on probability whe_l both stimuli are available.

The most cited version of the observation integration model is demved from the

theory of signal detectability and was originally proposed by Green (Reference 1).

As in PL-'enne's model ,'Reference 5), in its most gmple form, the infozmation from

the two sources is also assumed to be independent and uncorrelated. The model is

stated in te'm_s of the sensitivity mea__ure, d'

[(d'1_= d', + d'2) :/_

where d'1 and d'2 and d 12 r,_specavely, represent performance with the two stimuli

presented in isolation, and wben both stimuli are available.

Swets has noted ,,hat the staastical summation model fits simple detection data

fairly well when the observed detection probabilities are corrected for chance

success (Reference 4). Similarly, kn the experiments in which it has been applied,

the observation integration model well represenu the data. In general, the saatistical

summation model predicts better integ-ration performance than the obse_a_on

integration model presented here. My calculations indicate that when both models

are expeessed in corrected-for-chance probability of a correct response, the
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stausticai summa don model prex.lic_s the de_ecnon probabi_ty for integration to be

about 0.05 (depending on the absolute level) higher than that predicted by :he

observation integranon mode!.

Various versions and extensions of these models have been proposed. These

include various rules of decision combination (Reference 3), correlation

(informational rzdundancy) among inputs for decision combk_ation (Reference 2),

and observatiot_ integration (Reference 6), as welt as versions of ,.he ot-servat%n

integration model in which the separate inputs are differentially weightect

(References 7 and 8).

The two integration models presented here have been incorporated into the

development of a t_mework to evaluate combine_ human-machine performance for

sensor fusion displays. Additionally, me framework could be _sed to evalua:e an

operator's ability to integrate information from a multiple mor.itor display system er

a screen paging system.

A PROPOSED EVALUATION FRAMEWORK

II

A sensor fusion displ.y typically refers to the combined image disp!ay

resulting from the application of one -hrtage processing technique on ,'wo or more

individual sensor images. The proposed framework for evaluating the operator's

ability to use such systems is considered a normative approach; the operator's

perfomm_e with the sensor fusion display can be compared to pertbrmance on the

individual sensor displays comprising that display and to various optimal models of

integration.

Typically, as the environmental conditions change in which the individual

sensor operates, so does the information content of that image. The information

content of the image can be "scaled" by the operator's ability to perform a target

identification or discrimination task. One would expect task performance v, ith a

sensor fusion display formed from two low information content (hence, poor-

performance) images to still be relatively poor. Similarly, two high information

content (high-performance) sensor images should yield good performance when

combined into a sensor fusion display. Assuming that there was some independent

information in the two individu',d sensor images, one _ ould also expect

performance with the sensor fusion display to be better thanw_r.h either of '&e t,,c

individual sensors alone. This results in a three-dimensional performance space:

performance with the sensor fusion image is a function of the performance leeets

associated with the two individual sensor in,ages.

5
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Fi_are I shows pa_t of this performance space azv---------------_iatedwl_h a sensor fusion

d/splay. The abscis,_a and the ordu: _te result from the slLmulus-perforrrance scaling

for sensor (or display) iam¢, sensor (or display) 2, respectively, when wiewed by

an operator in isolation. The figure shows the 5,so-performance ho,Azonta! "slice"

r.l'u'ough the space in which dl pea'refinance data points r_resen_ 0.72 _corrected for

chance) target recognition probability when the two sensor sour-cs are combined

into a. sensor fusion disp;ay and presented to an opera:or. As nc ted, the actual

_rform,'mce space is three-dimensioeai and is represented in Figure 2 by similar-

appearing "slices" at thr.-¢ performance levels. Dr.za points A, B, C, and D are
discussed below.

OJ_ Pof_aerns_¢o

! A D_ _:r G ml ,'11

2.1 _"

0.Sg ° D _N

Pief_r_4r_ce

0._ 0,2 0.3 g 4
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FIGURE I. A Propos_ Evaluatio_ Framework

for Multise.aso_ DispLays.
FIGURE Z _ Hoc'g.onml Slices Through
th¢ "r'Nge-Dimensional P_ormance ._pace.
The number o_ _h overlay represents the

per(ormag¢ !=,,'e_ in P(C), for the dual
•_y or mdtiscns_ display task

Because the sent, or fusion display data are plotted as iso-performance slices,

data points ,-.at the origin represent better performance than away fi'om the origin,

For the sa ,,.vel of performance, a data poin, near the origin represents a

condition in .oh very tittle inforrnation was available in the two displays,

whereas a data Ant away from. the origin represents a condition m which relatively

more informanon was avaiiable m the separate ::lisplays. Thus, data points near the

origin represent ;ncrease_ operator integration effi_ency. In these fig'ures and all

6
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rerv,"iningreferences,P(C,_refers ';o me pr{:,por*x{Dn9f correct responses with a

corr_uon for cila]ce app!iezt. A correctiet_ for c_ance ;s ne_ssar?.' when measunng

pe.rfo:_ar, ce m PiC) u,,Uts _caase ",he ine:aatio_ n'_ieg ,,_..q_re :!::at a per%finance

few.1 of zero be asscxia_ed with a¢ operator re:eivmg no informatlc:: from ',he

display. No such correction is necessary, when mea._suring peffo_,-tlan, e m d' units

since d'= 0 r:fers to chance pc..--rt'ormance.

As car, be seen from the _,wo figires, the sensor fl_sion pertbrtraJ.ce space ca.c

be divided into three separate areas, Pefformaace Decrement. '_erformance

Enhancemen,, and Pt..-ff__tmance Super-Enhancement, each ,'ith unique

interpretations if data points lie in those areas. The two right- angle lines dividing the

Performance Decrement and Performance Enhan_ment areas are determined by the

horizonta_ w.,.d vertical lines crossing ",he axes at the ievei of performance (P(C) =

0.72 in Fig&"e 1) for the sensor fusion display. The smooth curves separating the

Pefformmlce Enhancem:nt and Perfo:'mance Super-Enhancement areas are the

predictions of the statistical sur_anation mcxlel (see above) where Pi2 = 0.72 in

Fig'are 1 and 0.30, 0.50, and 0.72 in Figure 2. (For clarity., only the statisticaJ

summador, model curve has been shown m the two figures. Because _e research to

date does not favor either the sta,,.isticai summa_on "or observation integra_'_n

models, bo_ predictions will be used when evaluating the experLmental data.)

The inte_retadon of ',he data points falling im.o the three areas is bes_ iilustrme_

by example.

PERFORMANCE DECREMENT

Suppose under a Nven envi.ronment_l condition, an operator achieved target

recognition performance of P(C) = 9.33 when viewing Sen_or I in isolation and

P(C) = 0.84 when viewing Sensor 2 in isola_on. When these two sources are both

available (separately on two monitors, or fused on a single monitor according to a

sensor fusion algorithm) to the operator and performance is P(C)= 0.72, the

resu!tant data point would be the erie labeled "A" m Figure 1. Obviously, in this

situation, the operator has not improved his overall targeting performance. In fact,

performance in the combined display case ha._ now decreased to P(C) = 0.72,

whereas previously the operator used Sensor ! in isolation and r,'ached a

performance of P(C) = 0.84. Such a performance decrement could be ",.heresuit of

,,.he deletion of necessary infc,.-rnauon by the sensor fusion algoriuhm or could

;'epre_nt a cognitive _Jmitatior. on file part of the ope__or.
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PERFORMANCE ENttANCEMENT

Data 7_int "B" m Figure 1 woutd resuh k¢p(_ = 0.72 peffo_a,'_ce obtained m

Me combine_-i case, when Sensors 1 and 2 yi_:[ded P(C) = 0.63 and P(C) = 0.55.

respectively, in isolation. In this c_e, perf._rram.=ce improved since the operator did

better in the combined case (0.72) than with either of the two sources alone (0.55,

0.63). However, one rrmdel of informatior integration, the statistical or probability

summation model, predicts a larger improw_'ment in this case. Thus, for data points

falling in dais region, there is some p_formance improvement, but one would

expect more. In fact, data point "C," lying on the statistical summation model

curve, shows that the model predicts that if Sensor 2 performance was 0.52,

Sensor 1 performance need only t'e 0.42 to result in combined ?erformance of
0_72.

Operator performance o,:cv.rrmg m this regioi, would occur when some of "._he

information in the two sources is redundant (correlated and not indeper, dent), or

when the operator or the sensor fusion algorithm integrate the information, but do

so subopumally. The statistical summation model (as well as the obser-,ation

integration model) can be viewed as an up!_'r limit of integration: it assumes uha_ the

information m the two sources i.s independent and non-redundant, and does not

assume, any decrease in _r..'orn-ance due to the limits of cognitive proces_s (i.e.,

me,urtn'y limitations. _vork _oa& or subopnm_ ciec2sion strategaes).

PERFORMANCE SUPER-ENHANCEMENT

Data point "D" in Figure 1 would result if a combined performance of

P(C) -" 0.72, and individuai perfermance for the two sensors was P(C) = 0. 17

and P(C) = 0.52. Data points fa11L,ag in this region between the model pregfiction

and the origin represent improved performance that is ber, er than is predictable from

the model. That is, when the two sources of information are viewed by the

operator, some new, previously unusable, information emerges that results in much

bev',er performance,

The random-dot stemogram display (Reference 9) can be tlaought of as an

example of a sensor fusion display that has these properties. In these displays,

random dots are offset differentially, yielding a perception of an object in the third

dimension. In such a stereogram there is no information whatsoever in the

individual halves of the stereogam. The information is represented as differences

between the two displays. The object is obser,,able only by stereoscopically fusing

the two halves of the stereogrrtrn or analytically determining the differences. In fact,

ff one conducted an experiment in which subjects had to state the flo,mng shape,
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. 0 .... C' ;",eone would presumably obt&in c_,ance penorzra..'-,ce when vle,,_.,_o ,,""

stereogra,.n half and per'.'ect perfo_a.nce when both stereogq'am pairs ae vie',_,ed.

This represen..:z P:, ":,._--m>:-: :,upe>Enhancement because based on chance

pe_or'mm'ace with fine :_t*:.reog'a.m halves, one wouid conclude '..hat tlney cortaip, no

information, l'i'q'us would lead one to predict crane". :c,f _rmmnce when both halves

are available, which obviou-ly is not the case. C e.arl>, conditions in which

Perf.orma,nce Super-Erkancement occur could be. capiulized upon to produce useful

sensor fusion techniques. The proposed evaluataon framework provides for the

abL1ity to recognize and qu:mtif2! such conditiom.

USE OF THE EVALUATION FRgMEWORK

To evaluate human performance with a proposed sensor fasion system using

the proposed evaluation trarnework, _he following steps mas_ _ taken.

1. Performance Scaling of Sensor 1. Determine the psychometr:c

function relating task performance (target/non-target or m-alternanve forced cho_ce_

to the environmental conditions of interest. For example, infrared imagery ;s

degraded by increasing atmospheric moisture. T'he informanon content of each

senmr image vanes with me env'trenmental condations, and in a sense, this scaiing

estimates the amount of information available to the operator with Sensor i alone

under those conditions.

2. Per'ormance Scaling of Sensor 2. Similar to Sensor 1.

3. Performance with Sensor Fusion Display. For vahous com-

binations of envi: anmental or sensor conditions previously evaluated in isolation,

detem'nne task performance using the proposed fusion algorithm and assocmted

display.

4. Performance with Ope.,-;_,{,a,r Integration. As in the sensor fusion

evaluation phase, determine task pez_:.>>,.nance with both sensors but with either _,,o

displays or a split screen. This condition acts as a control condition, essentiaIlv

allowing the operator to integrate the information from the two sensor;. A sensor

fusion Ngorithm should yield better task performance than when the operator user,

two displays or a split-screen display.

An experiment was c:,nducmd to demonstrate _: usefulness of the proposed

"evaluation ..5"amework." Since this work was aimed at the general methc×jolog) of

evaluating sensor fusion displays and due to the unavailability of a sensor fusxc, r_

system that operates on imaging sensors and yields a "fused" image, step no. 3

9
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alive (performance with a s_nsor fusion aJgorithm) was no_ performed. In _is

parvlcular experiment, two displays with __ndependent samples of the stimuli

simulating one type of sensor were used. (One might view this as a simulation in

which sensor fusion operates on image samples collected at different times cr from

two dam-linked sensor platforms using the same sensor type.) This is a s_cial case

of the .censor fusion condition, but the application of the evaluation framework to

two different sensors is identical. Because there was only one type of sensor to

scale, step no. 2 above (performance scaling of Sensor 2) was not necessary. That

step, of course, would have been necessary if two different sensors were used.

METHOD

SUBJECTS

Four volunteer subjects were tested. The author (subject no. ! _ported herein)

and three colleagues were tested for 8 to 12 hours each. All subjects reported
normal or near-normal close-distance corrected vision.

SHIP IMAGES

Side profiles of ships from Jane's Fighting Ships (Reference 10) were used as

stimui;, in the study. The ship images were approximately 2.7 centimeters high by

6.6 centimeters wide and presentea on Setchell Carlson 1CM915 CRT displays

driven by a Genisco GCT-30O0 irm.ge system. Viewing distance was determined

by the subject. The ship images were digitized profiles composed of 60 points

connected by _ines, evenly-spaced in the horizontal dirnension, as shown in

F;.gure 3. Each undistorted image spanned 60 vertical pixels by 180 horizontal

pixels on the CRT display.

The independent variable was the amount of noise added _o the vertical

dimension of the ship profiles. This variable was quantifiext as "sigma," the

standard deviation ofa Gaussian distribution with mean ze_. A computer algorithm

based on random number samples wa_ implem:nted for this ptupose. For a given

sigma level, 60 numbers (both positive and negative) were drawn from that

distribution and added individually to the vertical pixel value of each of me 60

points of the ship profile. For example, for sigma = 5, on avera . 68% (the area of

the Gaussian curve from - 1 to + 1 standan:! deviation) of the po2nts would be within

5 pixels of the: original undistorted vertical value. }iew numbers were drawn from

the dismbution for each ship and each triaJ; thus no two ctistoruons were identic_.

Two of the ships with distortions for four levels of sigrrat are shown in Figta,: 4.

10
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FIGL'KE 3. Dl__nT._ ,I$bap Profiles of the 15 Ships Used in Ibe ExpenmcnI_

w

SINGLE-DISPLAY TASK

The task was a 4-alternative, forced-choice (4A.FC) task and was controlled by

a VAX _ i/750. Subjects viewed a single-CRT display partitioned by vertical anct

horizontal lines into four numbered quadrants, each containing a ship image.

Subjects were required to identify which of the four ships was the California,

which was always present in each display. In addition to the target ship, California.

three different distractor ships were presented that were. randomly drawn from the

t4 remaining ships shown in Figure 3. During testing, subjects were allowed to

study the ship images for an tmlimited time. Subjects responded wire a button press

of the numbers 1 to ,*, referring to the quadrant which they believed held the targe_

ship, California. Ful¿ feedback (quadrant responded. :.orrectAncorrect, and _he

correct quack'ant if incorrect) was given after each trial via a di_:ized speech

capabilit7 on a Texas Instrument (TI) Portable Pr'ofessiona2 compu,.er. _ne e_d of

tL e verbal feedback initiated the next trial. Alt fo_ ships on a dispiay were created

wi.th the s. me sigma (distortion) level.

11
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DUAL-DISPLAY TASK

Conditions were identical to the sing,e-display task with the following

exceptions. Ship images were presented on two horizontally adjacent CRT

displays. The four ships were arranged in the same spatial pattern on both displays

(i.e., if the California was in quadrant 2, it was at that location in both displays, arxi

likewise for the 3 remaining distractor ships). All eight ships presented were

independently distorted by new draws from the Gaussian dismbution. Drawing the

distortion values from independent Gaussian distributions ensures that the

information on the two displays was independent and uncotrelated (see

Reference 11 for a discussior, of this technique). Within each display on a given

trial, the four ships had a constant value of sigma. The value of sigma for each

display was deterrmned as described below.

TEST PROCEDURE

Trials wen tester1 in 25-real groups, or blocks. Full performance feedback

(number correct as a function of sigma) was given after each bhxzk. Single- and

dual-display ,.asks were alternated approximately every two blocks so that the first

few blocks of each task could be discarded as practice.

For the single-d.isptay task, five levels of sigma were tested for each subject

and psychometric functions were generated. The five sigma levels used in the fws:
few blocks contained both low and moderate levels of sigma (from 0 to 20 or

5 to 25). Coupled with feedback after each trial, subjects were able to learn the

salient feana'es of the target ship relatively quickly.

For the dual-display :.Lsk an adaptive threshold es_mation procedure was used

that mathematically converged on the stimulus value associated with corrected-for-

chance performance of P(C) = 0.72 (Reference 12). in this technique, display 1

contained ships of one of five previously selected sigma levels. In display 2, the

level of sigma (in increments of 5 units) of the ships varied as determined by the

threshold estimation procedure. This procedure determined the display 2 sigma

level as a function of the history of the subjects' responses. This resulted in five

interleaved adaptive u'acks (one _ated with each level of sigma in display 1).

This procedure results in five pairs of sigma levels for displays 1 and 2 that al!

yield P(C) = 0.72 target identification performance in the limit. When plotted as in

Figures 1 and 2, me data poiats all lie on the same horizontal "si;.ce" through the

three-dimensional performance space (specifically the one labeied ".72" in

Figure 2).

13
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Another procedure to estimate a stmaulus value _associated wire a constant ieve!

of performaace is ,,o col!apse each of the interleave., tracks across trials into a

psycho .,netric function that can then be fit with a carve. This proc_ure has proven
to be useful and is an efficient method to concen,rate observations in the

performance range of interest (Refere.nce 13). This Irn_edure was attempted in this

experimem but did not vidd rehable estimates because of the number of data points

ha the psychometric ftmetion. This proc_ure would be preferred to the analysis tha_

was used if ti_ number of data points allowed the e._anadon of stable psychometric
functiorts.

The us: of the tracking algorithm in the present study should be viewed as an

experimental convenience, with its merits or limitations tangential to the use and

development of the evaluation framework. Use of the tracking algorithms may not

be appropriate in the actual evaluation of a specific proposed sensor fusion system

because only certain discrete pairs of stimulus combinations may be possible. For

example, if atmospheric humidity affects the image quality of both sensors, only

combinations of stimuli in which th" atmospheric humidity was identical make

sense. In those cases, one would not use the threshold estimation procedure bnt

would test the imagery ass¢_, tted with the envirom'nental conditions of interest.

These resultant dat, pairs would then be plotted on the various appropriate

horizontal slices similar to Figure 2 (detenmned by the dual-display or fusion-

dasplay performance). Luterpretation of the placement of the dam points on the

various horizontal slices would be carried out in a fashion similar to that previously,
described.

RESULTS

In, the single-display condition, the fast four b!ocks of data collected were

eliminated from the analysis as practice data. This decision was made after viewing

the accuracy data for each block The data were analyzed and summari_d as both

d' and P(C) (corrected for chance) measures. The d' data were converted to

In(sigma) by In(d') and fit with a regression equation weighted by the number of

observations per point (References 13 and 14) as shown in Figure 5. The FfC;

values relxmed have been c_ for chance according to the following equation

(see Equation 5.4 in Reference 3):

14
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These P(C) data were converted to ln(slgrna) by z-score (unit-normal deviate) and

likewise fit with a weighted regression equation. The data and associated

p_chometric functions are shown in Figure 6. Each data point m the cwo figures is
based on 60 to 100 observations. The Pearson correlations associated with the

linear regressions ,'anged ,_tom +0.91 to -,0.99.

Ok
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SUIIJECT t °I
+,I
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.;[
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.
xl=

10 _ sUgJEC'r 3
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:o 1

SUBJECT

10 100 I 0 100

SIGMA SIGMA

FIGURE 5. Psychometric Functiooa fo¢ the Four Subjecis ReNting Distortion
Level (sigma) to the Sensitivity Measure, if, m the Single-Display Task.

In the duN-display condition, the five interleaved adaptive tracks were

analyzed. For each of the five timed display 1 sigma levels, an average level of

sq,grna was calculated using Levitt's reversal mean technique .,(Reference 12). In that

technique, the stimulus level associated with P(C) = 0.72 is estimated by averaging

the midpoints of either the ascending or descending series of each Pack.

Customarily, some number of the early midpoints are discarded to allow

15
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pcrf_rnance to stabilize. ,In the present experiment, ',_hefirst two ascending and two

descending scrics of every u-ack we,re e _ILminatcd prior to computing d_c reversal

mean estimates. This corresponds to approximately the same amount of data ",.hat

was deleted in the single-display coadidon, so that the data analyzed in both the

sing',':- and dual-display conditions represent comparable le,_els of u'aJning.
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FIGURE 6.Psycho_emc FunctionsfortheFour SubjectsRelatingDistomon

I._vel(sigma)toCorrected-f_-ChanceP(C) m theSingle-Disp_yT&_k.

Additionally, the first few blocks of testing included :¢lav-'vely easy levels of

the five fixed sigma levels on display 1. These fwst blocks were discontinued as

the subject became better at the task, and were replaced by higher sigma levels. For

example, the five levels for subject no. 2 ranged from 0 to 20 at the beginning of

the experiment but were increased to. a range of 15 to 35 to keep idle 3timuli tested in

the _-ppropriate meaningful psychophysical range and to not exceed the

16
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1.imitations of the tracking algorithm. Clearly, in an inte_on task_ the algoriuhm

will fail to converge when single display performance exceeds the value that the

algorithm is attempting to maintain (in this case) P(C) = 0.72 ,,i,,ln, two displays.

'Vne discontinued tracks were not included in the analysis.

When the five fixed sigma levels on display l were changed as described

above, the tracks were continued if possible. In a small number of the tracks, the

track was erroneously "reset" to an arbitrary starting value. In those cases, the

ascending cr descending series, which included the arbitrary s:arting value, was not

included in the estimate of ",.hereversal mean.

Table 1 shows the duN-display performance data for those tracks that yielded

reversal mean estimates after eliminating the first two ascending and descending
series.

TABLE 1. Tracking Algorithm Estimates of Display 2 Sigma Level as a
Functio_ of Display i Sigma Level for Each Subject in the Dual-Display

Condition. SE = standard error of the mean; n = number of reversals.

ill i

Reversal mean estimates

Subject
no. Dismay ! Display 2

s_gma s_gma

1

2

!5
2O
25
30
35

15
20
25
30
35

15
20
25
3O
35

17
19
21
23
25

20.68
17.00
15.00
11.00
17.50

25.83
27 50
22.00
19.38
13.50

16 O0
14.38
13.21
8.93

12.50

26.443
16.0,4
17.00
15.91
13.75

SE n

1.29 11
2.06 10
!.60 7
1.07 10
2.89 3

4.41 3
0.00 1
3.10 5
1.20 4
0.61 5

1.1,4 5
1.03 8
0.83 7
0.99 7
0.00 1

5.26 7
136 "!2
166 10
1.23 11
0.90 12

17
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IMPLEMENTATION OF THE EVALUATION FRAMEWORK

Using the data frum _,bject no a., Figure 7 is an example of the analysis

method. T .e lower panel shows the stimulus track determined by the threshold

es,_nadon algorithm for the condition in which the distortion of the ship images in

the fixed display, display 1, was sigma = 25. Based on the pattern of this subject's

responses, the sigma level of display 2 wa.s either increased or decreased across

trials in an attempt to maintain P(C) = 0.72 (corrected for chance). The mean of the

midpoints of the 12 descending series was calculated to b¢ 13.75, as shown by the

bold line. Therefore for dais subject, when sigma = 25 on display 1, the sigma level

on display 2 had to be 13.75 to obtain P(C) -- 0.72 (corTected for chance).

These two sigma levels can then be "scaled" by the single-task psychometric

function as shown in the upper half of Figure 7. In this case, when display 1 was

sigma--25 it yielded P(C) = 0.39 in isoiation. When display 2 was

sigma- 13.75 it yielded P(C) -- 0.71 in isolation. When both displays were

available, however, performance was presented simultaneously with a P(C) of

0.72. That is, for this condition and subject, ._n P(C) accuracy terms, a display

"worth °' 0.39 plus one "worth" 0.71 combined to be "worth" 0.72.

All of the data pairs,yielding iso-performznce levelscan bo scaled in the

manner describedabove and plottedo[}the evaluationfrancwork graph.Figure 8

shows thedata inP(C) unitsas scaledby theP(C) psychomcmc functior,s,and all

pointsrepresentingP(C) = 0.72 (correctedforchance) dual-displayperformance.

Figure 9 shows the data in d' unitsas scaled by the d' psychometric functions,

with allpointsrepresentingd'= 1.86(which correspondsto P(C) = 0.72).In both

figures,only the dat-_based on threeor more reversals(n > 3 from Table I) arc

plotted.The two curvesrepresentpredictionsof thetwo optimal integrationmodels

(statisticalsummation and observationintegration)as describedby the equations

shown in the figu_s. The d'predictionsand P(C) predictions,respectively,were

converted toP(C) and d'unitsaccordingtoalgorithmno. 2 in Reference 15.

18
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FIGURE 8.ExperamentalDala.inCorrected-for-ChanceP(C),
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DISCUSSION AND CONCLUSIONS

Ten of the eighteen data points in Figures 8 and 9 lie in the triangular

"performance enhancement" region when plotted onto ,,,he evaluation framework

graph. For those conditions, the subjects were able to integrate the images from the

two displays and performed better than when only one of those aisplays was

available. The conditions that led to integration appear to ,-,ccur when display nc 1

w'ts of mode, ate dJ.stortion (approximately P(C) = 0.50 in Figure 8, ar.d d' = 1.25

in Figm'e 9),
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When a highly distorted display (yieiding about P(C) = 0.30) is presented as

display no. 1, the images in display no. 2 must be of very low distortioa to yield

P(C) ---0.72 with both displays. In fact they must be of such low distortion that if

presented in isolation, _ey would have fielded a performance of P(C) = 0.80 or

0.90. The subjects would have done better in those conditions if the subjects had

simply ignored the highly distorted images on display ne. I and based their

responses on:y on ",he images of display no. 2. (Graphically, that would have

forced the data points onto the horizontal straight lines shown in Figures 8 and 9.)

A model in which subjects 'always gwe :qua] weight to the information in the

two displays (despite the distortion level) would explmn tlds finding. The effect

may be similar to that noted in Reference 16 where subje_,ts weighted obviously

irrelevant information equally with relevant information, l'he conditions which

2i
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facilitate me in_egrauonof display information, and _ose that not only do not

facilitate, but actuallv decrea._ performance, clearly warrant more investigauon.

As sra',ed earlier, the statistical summation and obsen'ation integration models

can be viewed as an upper bound to normal (not Performance Super-Enhancement)

information integration. In this particular experiment, the model predictions were

not only an upper bound on performance in general, but in fact were appropriate

predictions since the information in the dual-display condition was independent and

uncorrelated. The models' failure to predict the data est2blishes the existence of the

subjects' cognitive limitauons in this particular task.

As noted previously, since these models have both been extended in the

literature to include correlation between information sources, one could use model

fits to determine the level of informational redundancy between two displays. If one

were able to measure objectively such redundancy on a specific task, then it would

be necessary to use those equations in the evaluation framework instead of those

used in Figures 8 and 9, which assume no correlation. Increasing the correlation

from zero to one in these models fo_es the model predictions towards the verfic_

and horizontal lines r_presenting the boundary of the Performance Decrement and
Performance Emhancement areas in the evaluation framework. Tkis holds becaase

data points away from the origin represent less integration, and with increasing

correlations one expects to obse,-we less integration (adding a second display does

no_ add as much new inforrnarion with larger correlations).

In summary, the evaluation framework developed herein has been

demonstrated to be a usefuI tool to evaluate an operator's ability _o intega'ate

information from two displays. Similarly, it has been shown how one can

determine the amount of information that an operator tan extract .from a sensor

fusion, or multisensor, display. The techniques discussed here allow the evaluation

of :a-ultisensor displays by comparing multisensor display performance to the

predictions of existing optimal integration models and to multiple display

presentations. This evaluation allows th.e human factors engineer to recognize in

both an absolute and a relative sense whether the proposed multisensor display does

what it was designed to do, i.e., ;.ntegmte the sensor information and present it
wel!.
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